HPS in 20 Objects Lecture 16: Irene Manton’s Slides

By Simon Newey

In 1946 Irene Manton became the first female professor at the university of Leeds. Her work on botany using electron microscopy to study cell structures in greater detail than ever before, contributed to ground breaking discoveries made in these fields, as well as earning her several academic honours never before held by a woman. While at Leeds, she covered the walls of offices and labs with prints and artworks, many of them from east Asia, or schools influenced by east Asian art. These art works often hung next to prints of electron or ultra violet microscopy.

These images often had a striking resemblance to one another, leading one visitor to confuse artworks for micrographs. They later commented on “that mad professor at Leeds who colours her micrographs, cuts them up and puts them on the wall”. Manton herself acknowledged the similarity between these images, and made clear that she did not see her collection as art, but “as working tools with which the scientist endeavours to comprehend certain aspects of the world which are not science.”

In this talk, Nicola Williams, Alice Murphy and Steven French set out to help us understand Irene Manton and the strange connection between art and science, that led her to amass this collection of images.


Nicola Williams began the talk with a fascinating account of Manton’s life and personality. Manton was presented as a force of nature, whose background, intelligence, and personality allowed her to break through the glass ceiling of her day. Manton devoted her life to exploring the structures of plant cells using cutting edge electron and ultra violet microscopy. This new technology could give unprecedented insights about the microscopic world, but required skilful interpretation. Scientific models had to be developed from a range of (often unclear) images, produced with different technologies, at different length-scales. Manton’s skilful use of this new technology allowed her to make important breakthroughs, including successfully identifying structures within cilia and flagella.

Manton was skilfully presented through a broad range of objects associated with her life. From sketches of plant structures, she made during her school days, to the Philips 100 Electron Microscope with which she worked, and of course her art collection. Nicola presented us with Manton as a complex character with a fascinating lifelong attachment to art.

Alice Murphy then took over to discuss representation in art and science, and the connections between Manton’s art collection and her work as a microscopist. Alice began by discussing the philosophical question of whether art can ever be a valuable source of insight or knowledge. Plato believed it could not. He believed that it did not stem from a serious knowledge or understanding of the subject, and so, was likely to mislead. Recently however, Catherine Elgin has argued that art departs from truth only in the way that scientific models do, and so should not be regarded as misleading, but helping us to a particular understanding.


Alice began by using examples of satirical drawings to show how departing from the form of the physical object allows the artist to represent other aspects of their subject. She then proceeded to show the same themes in cubist and expressionist works, as well as Chinese and Japanese art which influenced these schools, often using examples taken from Manton’s collection. She compared this to the ideal gas law, as an example of a scientific model that departs from the dynamics of actual gasses, in order to exemplify particular dynamics of these gasses which can be hard to discern without these idealisations. In both cases an informative and explanatory representation of a subject is being achieved by idealising away from the details of the actual subject. Alice concluded with a fascinating discussion of the similarities and differences between these types of representation.


Finally, Steven French concluded with a discussion of observation in art and science, and the role that developments in scientific observation within the lifetime of Irene Manton are likely to have had in forming her attitude to art. Manton’s professional life was spent working with a range of microscopes, using electrons, ultra violet, and visible light to produce images of microscopic structures. These were often cutting edge technologies, and could be extremely difficult to operate and interpret. The makers of the Philips 100 electron microscope themselves described successful use of the microscope as “being rather more of an art than a science”.

The images produced by these highly technical instruments are very different from traditional notions of observation. Manton worked hard to interpret these images, sorting informative data from often unclear micrographs. It is easy to see why schools of art work that took a broader of view of how images represent, might have appealed to her. Steven continued with a discussion of whether or not these kinds of microscopy can really be considered as observation, given the exceptionally technical methods needed to make sense of them. He concluded by returning to the idea that an image could be representative, even if it does not resemble observation in the traditional sense. This possibility can clearly be seen in both the art collection, and the technical work, of Irene Manton.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s