Category Archives: Collections

Leeds’ Hidden Visionary: Louis Compton Miall and Magic Lanterns


Professor Louis Compton Miall, Photo by E. E. Unwin

To most current students in Leeds, the name Louis Compton Miall would mean very little. A few might recognise the name from the LC Miall Building, home of the Faculty of Biological Sciences. Our team certainly had never heard of him before we were assigned to create an exhibition on magic lanterns and their relationship with the University of Leeds.

While carrying out research for the exhibition Lighting the Way: Leeds and the ‘Magic’ Lantern, we noticed that Miall’s name kept recurring. It soon became clear that Miall and his pioneering work with magic lanterns have long been overlooked. His innovations were not only crucial to the development of magic lanterns, but to teaching more generally. More on Miall later, first a quick history of the lanterns.

First developed in the 1600s by the Dutch scientist Christiaan Huygens, magic lanterns were an early form of projection equipment, which used a light source and a series of lenses to show images on a much larger scale than ever before. See this previous blog post for a more detailed discussion of the lanterns’ history and workings.

However, it was not until the mid-nineteenth century that magic lanterns started to be used widely in education – although in this context they were often called ‘optical lanterns’ instead as ‘magic’ was deemed not serious enough. In a darkened hall, a lecturer would deliver a talk accompanied by slides displayed by a specially-trained ‘lanternist’. This format was used for the rest of the nineteenth century, despite the obvious drawback of teaching in the dark and the difficulty of coordination between the lecturer and lantern-operator.

Lantern Teaching

Magic Lantern in Use During a Biology Lecture
History & Philosophy of Science in 20 Objects. Object 20: Magic Lanterns

Here, the intervention of Louis Compton Miall was pivotal. He was Professor of Biology at The Yorkshire College and its successor the University of Leeds from 1876 to 1907. In order to display his biological specimens more easily to his students, he developed a more stable and powerful lantern which could broadcast images that were visible even with the lights on. Miall could then combine the lantern with specialist equipment such as microscopes or liquid-containing ‘tank slides’, allowing the live demonstration of experiments to an entire lecture hall.


A Nineteenth-Century Newton and Co. Combined Lantern and Microscope
A. Pringle, The Optical Lantern for Instruction and Amusement (1899)

Professor Miall also altered the set-up of the lantern so it could be operated by the lecturer unaided. He could now seamlessly teach and operate the lantern, without having to interrupt his lectures to communicate to an operator if there were any difficulties. In an article of May 1890 from the Review of Reviews entitled ‘How to Utilise the Magic Lantern; Some Valuable Hints for Teachers’, its author summarises the benefits of Miall’s method:

“The most novel and important points are that the slides are exhibited in a well-lighted room, and all the necessary manipulations are done by the lecturer or teacher without any difficulty.”

Today, in the age of the digital projector, most University staff structure their lectures and seminars around a PowerPoint presentation, which they use to illustrate their points and invite wider discussion. This teaching method, which is so taken for granted today, relies on the innovations of Professor Miall in allowing lecturers to control their own presentations and show them in a lit room.

Without Louis Compton Miall, the whole structure and teaching practices of higher education could thus have been radically different. It is time to recognise Miall’s achievements with magic lanterns at the University of Leeds, and shine a light on this largely unsung educational pioneer.

In the Lighting the Way exhibition, we track the evolution of magic lanterns at the University of Leeds, including highlighting the contributions of individuals such as Professor Miall and other educators to the development of the lanterns’ educational potential. Amongst the objects on display are a lantern produced by the famous Newton & Co. optics; various lenses and accessories used in lecture halls, such as an elbow polariscope; and a small sample of the Museum’s collection of around 5,000 lantern slides, including two mechanical astronomy slides.

Lighting the Way: Leeds and the ‘Magic’ Lantern has been curated by MA Art Gallery and Museum Studies and MA Arts Management and Heritage Studies students in collaboration with the Museum of the History of Science, Technology and Medicine. It will be displayed in the Philosophy, Religion and the History of Science Common Room on the 1st floor of the Michael Sadler Building from 13 December 2018.

More information can be found on the use of magic lanterns in education at Leeds here.


HPS in 20 Objects Lecture 8 – Brain Knife

The second HPS in 20 Lecture of this academic term has kept to the exceptional standard we have come to expect from this series. Like all of these talks, one central object was used to catalyse a discussion that ended up being extremely wide-ranging; taking us to considerations of the very nature of our being. However, the lecture began with PhD researcher and museum expert Laura Sellers explaining how the museum had come into possession of what initially seemed to be a rather ordinary looking Knife. Rather like the ones my Gran used to keep. However, this was in fact a knife used for dissecting the brains of the dead. Laura pointed out that it had been designed with a small horn handle and a disproportionately long blade in order that its users could wield it with the requisite delicacy for long cutting strokes through soft tissue. And who were these delicate users? Most likely, they were teachers and researchers working in Pathology at Leeds in the Algernon Firth Institute or Thoresby Place.


School of Pathology on St. George Street opened in 1933 by Algernon Firth

We were then shown images of the places and contexts in which these tools would have been used, leading up to the site of the current Medical School in the ‘concrete extravaganza’ that is the Worsley Building. I had just the week before started working in administration in the medical school and delighted at telling my new colleagues the next day that the Medical School had just had its 850th birthday on the 25th of October. Turns out I had misheard this and it was actually 185 years old.  They were either too polite or too sorry for me to point out my ridiculous error. Luckily there was nothing ridiculous in the main body of the lecture, which was given by Marie Curie Fellow Dr Sean Dyde.


Van Aeken, Cure of Folly or the Extraction of the Stone of Madness, 1485

Sean began his discussion of the brain knife by giving some context about why people have traditionally cut into brains and indeed into skulls, and pointed out that the notion of the mind being connected to the brain isn’t actually an especially Western idea. He then moved onto explain how he would situate the mind brain dichotomy in a particular discussion of the Age of Enlightenment, that is, the eighteenth century. Sean was clearly passionate about this subject matter and he really came into his own here, with some really lovely turns of phrase used to describe this period: ‘an Age of Improvement, an Age of Refinement, an Age of absolute monarchs, an Age of Enlightenment. A time of new wealth, paper money, stock bubbles and market crashes; Greco-Roman architecture, English gardens and Gin Lanes.’

At this point, perhaps predictably, but clearly necessarily, Descartes came in. It would be bizarre indeed to describe conceptions of the mind in the 17th and 18th century without resource to the Cartesian method. However, Sean did not relate the brain knife to philosophy in isolation; he took us on a fast paced tour of literature, politics, drugs, and science.

The Nightmare by Henry Fuseli



Sean was able to condense a great deal of complicated ideas into an entertaining and provocative lecture, which I found thoroughly enjoyable. My favourite parts probably centre round his discussion of Tristram Shandy (a book I have not read, but now intend to) and his ideas about the relationship of the romantics to God, art, and opium. The link between nineteenth century phrenology and a recent paper in the journal Nature, in which its authors highlighted 360 localised areas of the brain, provoked the most questions from the audience. There was in fact so much in the lecture that I’m really struggling to provide a succinct summary of the diverse areas it touched upon. Of course it was a subject area that I am well familiar with, but my friend Amy (a physiology researcher) said that she had loved learning about medicine in such a different way. It should not only be recommended for its variety, but also for the elegant prose Sean used throughout. I suppose what I want to get across is how interesting and entertaining this was, and highly recommend that anyone reading this should also watch the recording below.

As always though, these lectures are best experienced live, and the selection of objects on display at this one was particularly fascinating (or particularly disgusting depending on your sensibilities). A preserved sheep’s brain and wax models of embryonic development of the brain were used to good effect to illustrate points in the lecture, and we were invited to take a closer look at the end. On Tuesday the 22nd of November we are going to be treated to an Anthrax ridden finger floating in a jar, and I, for one, cannot wait.

HPS in 20 Objects, Lecture 4: The Microscope

In the fourth of the Museum of HSTM’s public lectures, Clare O’Reilly and Juha Saatsi presented a truly integrated historical and philosophical account of the object which has become emblematic of scientific practice – the microscope. Below is an image of the late-nineteenth-century light microscope that was the object of our talk. It is held in the collections of the Museum of HSTM, along with a number of other excellent examples of nineteenth- and twentieth-century microscopy.

20 Objects Microscope

Seeing is believing. But what exactly should we believe on the basis of what is observed through scientific instruments like microscopes? Clare and Juha’s talk highlighted some of the scientific, historical and philosophical problems faced when making realist inferences from microscopic observations.

Clare, a PhD student with @hpsleeds, opened the lecture by introducing our large audience to some of the natural philosophers who documented the unseen microscopic world around them. Robert Hooke and Antony van Leeuwenhoek were two such irrepressibly curious people. Hooke’s 1665 Micrographia was a wonderfully detailed record of his observations, while Leeuwenhoek became known for his ‘little animals’. So extraordinary were their illustrations of magnified fleas, snowflakes and numerous other curios that contemporaries did not know whether to believe they were real.

L0043503 Robert Hooke, Micrographia, flea

‘Engraving of a flea’. Robert Hooke, Micrographia. Wellcome Library, London

The microscope’s reliability remained a subject of debate and uncertainty throughout the eighteenth century. This changed during the nineteenth century, however, as specimens could be cut more thinly and stained with dyes for more ready examination on glass slides. Indeed,the microscope had become such a powerful tool that it allowed biology to become the nineteenth-century science par excellence. A person’s skill now lay in preparing slides and ‘reading’ the images observed on those slides. The level of intuitiveness or inference required to ‘read’ slides meant that microscopy came to be considered an art form, rather than just a scientific procedure. By the 1930s Irene Manton, a plant cytologist at the University of Leeds, was becoming well known for her work with ultraviolet and, later, electron microscopes. Her electron microscope is still held in the collections of the Museum of HSTM.

Drawing upon Clare’s historical introduction, Juha introduced our audience to some of the key philosophical problems surrounding the limits of scientific knowledge and observation. Scientific instruments such as microscopes furnish us with knowledge that transcends what our senses could otherwise perceive of the natural world. But can this ever be an objective experience? What role does inference and observation play in microscopy?

There has been a growing reliance upon technologies that allow us to ‘see’ microscopic phenomena that were previously the subject of inference. The light microscope was one such example. However, it became subject to competing theories of empiricism and realism. Hooke’s optimism about microscopy – that there was nothing too small to escape inquiry, thereby opening up an entirely new visible world – was soon challenged by the empirical theories of his contemporaries. Empiricists believed that scientific instruments did not, as Hooke hypothesised, reveal what existed behind observable phenomena, but instead created entirely new sets of phenomena to be observed and interpreted independently.

Empiricists, such as John Locke, questioned whether phenomena observed under the microscope could be used reliably to understand the natural world. For example, could the ‘nature’ of blood be understood through microscopic examination? Its colour and consistency changed so dramatically under the microscope that Locke believed it impossible to observe its natural mechanisms, which correlated microscope images with what was observable to the naked eye. Locke was not simply highlighting the mechanical limitations of the apparatus. He was philosophically challenging whether microscopes could ever reveal true microstructures, rather than simply an impression open to inference and interpretation.

Today, however, many philosophers have adopted the middle ground between realism and empiricism, and Juha concluded the lecture with a brief discussion of this position. ‘Moderate realism’ posits that we can learn to see with microscopes, but not through them. Microscopes facilitate interaction with the natural world, but do not provide a more high-resolution version of reality. It is instead a continuum of vision.

If you would like to see more commentary and images from this and other lectures in the series, follow the Twitter hashtag #hpsin20.

Digitization and Cyanotypes

Our Artist in Residence, Lawrence Malloy, is currently working on a project to digitize some (maybe all, but there are thousands) of our magic lantern slide collection. Using some of these images Lawrence is creating beautiful artwork inspired by the collection such as this stunning cyanotype print.


More or Lawrence’s work can be found here or follow him on twitter @lawrencemalloy

Good Vibrations Part Two.

These Tuning fork tests give qualitative rather than quantitative results. It was not until the invention of the telephone in 1876 that quantitative data on hearing loss could be compiled through the use of the audiometer, which was invented by David Edward Hughes just two years later, in 1879.

The audiometer is an instrument that is integral to many of the themes of my thesis on telephony and hearing loss, as an instrument developed from the telephone in order to measure and classify widespread hearing loss, particularly in the military. Despite being developed at the end of the 19th century however, it was not until after the Second World War that it gained widespread acceptance. This is because it became necessary to test many people quickly and have a numerical result that could be compared before and after service in order to award or refuse compensation for noise induced hearing loss. The audiometer had not been taken up previously largely due to practitioners reluctance to use the more complicated instrument when tests like the watch tick test, spoken voice (Smellen) test or tuning fork test were far simpler. Debates over the utility of these tests intensified in Britain after the First World War, when doctors were faced with treating soldiers suffering from both noise induced hearing loss and temporary hearing loss caused by shell shock.

In 1928, the British Medical Journal devoted an article to a report on the issue of tests and classification of hearing, in which various medical authorities held forth on the subject. Mr Somerville Hasting started the debate with the statement that he was convinced that, from the point of view of scientific advance, arbitrary units of hearing must be given up.’ He was met with the response that, ‘ For distance-tests a watch was useful, but the instrument known as the electrical audiometer, while valuable for research, was, he considered, impossible for ordinary clinical use, owing to its complication and lack of portability. Tuning-forks yielded accurate results.’

The endurance of tuning forks may also lie, as M.Ng & R.K. Jackler imply, in their ‘appeal to other for their elegant simplicity’.In my mind, there is certainly something intrinsically satisfying in the process of striking these cool steel devices against a hard surface to create a resounding and resonating ting.

Tuning fork frequency demonstration.

The tuning forks featured in these videos and photographs are just a small part of the wonderful linguistic and phonetics collection held within the museum of History, Science and Medicine at Leeds (HSTM).  In the background to the video and the featured image in this post are a beautiful collection of books describing the dialects of India, which also contain annotations by Professor Daniel Jones, who was one of the people who inspired George Bernard Shaw to write the character of Henry Higgins (Alexander Melville Bell, Alexander Graham Bell’s Grandfather has also been cited as inspiring this role).  Professor Daniel Jones was involved with the Leeds phonetic department when it began in 1947.

The tuning forks were also part of the equipment held by the department at its inception and they range over an octave at frequencies 256-512 kHz. This indicates that these were musical tuning forks, possibly used to tune instruments rather than test hearing. Modern concert pitch (or international standard pitch) was only established in America in 1939 so it is unsurprising that this earlier British set does not correspond to these frequencies. The forks were manufactured in Sheffield, an industrial town close to Leeds, famous for manufacturing more conventional crockery as part of its steel industry.

These tuning forks are now on display as part of the ‘Hidden Histories’ exhibition, which is situated, most appropriately for this example, in the foyer between the department of philosophy, religion and history of science and the department of linguistics and phonetics. Check out the exhibition to see why they are my favourite thing in the museum and see more objects that other students have a particular affinity with.

Good Vibrations Part One


[1] Newby. H.A & Popelka G.R, Audiology ( Prentice Hall Inc, 1985)p.104-105

[1] J. Blauert, The Psychophysics of Human Sound Localisation, (MIT Press, 1997)

[1] M.Kay, ‘Making uses for telephone instruments: the health, safety and security innovations of medical, mining and military users’ in Inventing telephone usage: debating ownership, entitlement and purpose in early British telephony.

[2] BMJ Nov 17th, 1928

[4] M.Ng & R.K. Jackler, ‘Early History of Tuning Fork Tests’ p.105